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Study of the shape of random waIks: 11. Inertia moment 
ratios and the two-dimensional asphericity 
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Laboratorio de Fisica Te6rica. Depanamento de Fisica, Universidad Nacional de La Plata, 
CC 67-1900 La Plata, Argentina 

Received 19 January 1995 

Abstract. A study of some features of the quantities used to describe the s h a p  of random 
w&. focusing on the probability distribution of the asphuicity of discrete random walks in 
two dimensions, is presented. A connection is established between the asphericily distribution 
and the probability distribution corresponding to the ratio of the principal i n e e  moments. 
The probability distributions of arbitrary inertia moment ratios are analysed for varying spatial 
dimension, and an analytic expression for them is found'which presents excellent agreement 
with Monte Carlo data in all the cares considered. This function is then used to obtain the 
corresponding two-dimensional asphericity distribution, which also proved to be a very good 
approximation to the m e  distribution obtained from an independent Monte Carlo simulation. 

1. Introduction 

In a recent paper [I] we presented a comprehensive study of the shapes of discrete 
unrestricted random walks in d dimensions. In that paper we discussed the probability 
distribution of several quantities, namely, the principal inertia moments, the asphericity 
[I-31 and the angle between the principal axis of inertia and the end-to-end vector [l,  41. 

We also found an analytical probability distribution for the inertia eigenvalues which 
approximates the Monte Carlo data very well in a number of cases, and have used~it to- 
construct the corresponding combined probability distribution in order to obtain analytical 
expressions for derived quantities such as the asphencity. Among other results, it was 
established that the resulting probability distribution for the asphericity in two-dimensional 
spaces disagrees significantly from the true one [l]. 

As mentioned in [l], the study of the shape of random walks is of interest to many 
scientists, especially (but not reduced to) those connected with polymer science. For 
example, the concept of the shape of random walks has recently been used to analyse 
the effect of the concentration [5] or interactions [6] on the mean dimensions of single 
polymer chain models. In this paper we are going to present a study of some properties of 
the asphericity and related quantities which we consider will be useful to applications like 
the ones already cited. 

The main scope of this work is to present a more complete analysis of the probability 
distribution of the asphericity in two dimensions. To this end we establish a connection 
between the asphericity distribution and the probability distribution of ratios of inertia 
moments. Then we find an analytical expression for such distributions which presents 
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an excellent agreement with the distributions obtained from Monte Carlo simulations. The 
expression found possesses four external parameters which are set hy nonlinear least-squares 
fits with the respective Monte Carlo data. 

The distribution mentioned is used to obtain an analytical probability distribution for 
the asphericity in two-dimensional spaces, and this distribution is, in turn, checked against 
the distribution obtained from an independent Monte Carlo simulation, finding that there is 
a very good degree of agreement between both curves. 

There exist previous papers which study some related quantities such as the ratios of 
mean values of inertia moments [4, 71 of three-dimensional random walks, combinations 
of some of these mean values in connection with the asphencity [Z, 81, and/or probability 
distributions for the three-dimensional asphericity [3]. To the hest of our knowledge, and 
excluding our previous paper [l], there are no other studies of the quantities analysed in 
the paper, that is, probability distributions of the two-dimensional asphericity and/or inertia 
moment ratios in spaces of arbitrary dimension. 

Our paper is organimd as follows. In section 2 we present most of the definitions 
and basic formulae that will be used throughout this paper. In section 3 we address the 
problem of the asphericity in two dimensions, review some results of [l] and establish 
the connection with the moment ratios. In section 4 we present a detaiIed study of the 
probability distribution of the inertia moment ratios for arbitrary spatial dimension. In 
section 5 we return to the asphericity, analysing the probability distribution that is obtained 
combining the results of sections 3 and 4. Finally, in section 6 we give our conclusions 
and final remarks. 

2. Definitions 

A random walk of s steps in a d-dimensional space can be defined by specifying s + 1 
d-dimensional vectors T,, a = 0, . . . , s, which represent the positions within the walk [ 11. 
With no loss of generality we will take TO = 0. We also introduce the step vectors: 

For discrete unrestricted random walks with coordination number U, each one of the vectors 
B. may be any one of the unitary vectors &el, i e z , .  . . , k e d ,  where B = {el,. . . , ed} is 
an orthonormal basis of the d-dimensional space. 

To obtain an adequate measure of the shape of a random walk, we use the following 
quantities [l]: 
(i) The cenfre of mass: 

T a = T m - l + € a  a = l ,  ..., S. (1) 

(ii) The inertia matrix 

This matrix is symmetric and positive definite. It possesses d positive eigenvalues 
hl 2 A.2 > . . . 2 h d ,  and an orthogonal set of d eigenvectors. 

(iii) The asphericity: 
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This quantity take$ values between 0 and 1. A = 0 (1) corresponds to a perfectly 
spherical (rod) shape [l, 21. 
In a computer simulation, statistically independent random walks of a given length s 

are generated. In general, this provides a set of random walks with diffemnt shapes, which 
can be used to build frequency histograms for quantities such as the asphericity and the 
 principal^ inertia moments. 

Here let us introduce the probability distribution for the principal inertia moments: let 
r = min(d, s), the eigenvalues hk,  k = 1, . . . , r distribute accordingly with P&), which 
verifies the normalization condition 1," &(A) dh = 1. In [l] we have found that these 
distributions are, with good approximation, chi-squared probability distributions of the form 

where r(x) stands for the gamma function, and ak and uk are external parameters [l]. 
To evaluate the probability distribution of a function G(Al, . . . , Ad) of the eigenvalues- 

such as the asphencity, for example-one needs the combined probability distribution 
Q(hi, .  . . , 

In general, the combined probability distribution Q is not known, and so it is not always 
possible to explicitly evaluate the distribution (6). Usually, it is assumed that the probability 
distributions for the different Ak's are independent, that is, 

The eigenvalue ratios 

constitute a particular example of a function of the eigenvalues. As we shall see later, 
these quantities are of particular interest for describing the shapes of random walks in low 
d spaces, and especially for d = 2. For future reference, we are going to introduce here 
some related definitions and formulae. 

Let PR,~  be the probability distribution of Rij. Applying equation (6) to this case, and 
after some simple calculations, one obtains 

m 

PR,~(z )  =i U Q(u,zU)du 0 6 z < 00 (9) 

where Q(hj, hi) is the combined probability distribution of the eigenvalues hj and hi. If 
(7) and (5) hold, then Q(hj,hi) = Pj(hj)Pi(Ai) and the integral in (9) can be solved 
straightforwardly giving 

Hereinafter we shall take, for convenience and with no loss of generality, i z j i .  
With this assumption, and by construction, we have hi < Aj and so the true probability 

t It is easy to demonstrate that P R , ~ ( Z )  = z - ~ P R , ( z - ' )  for all i # j .  
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distribution for P&,(z) vanishes for z > 1. Since the distribution (10) is strictly positive 
for all z > 0 (even when i > j ) ,  it is clear that it cannot represent the true one in the 
general case. Nevertheless. PR,,(z) from (10) with z =. 1 is very small in all cases where 
(7) adequately represents the true combined probability distribution, and in such situations 
it is an acceptable approximation to the true distribution. 

In [ l ]  the region of validity of (7) is discussed, arriving at the conclusion that 
the probability disbibutions for two different eigenvalues Ai and Aj ,  are approximately 
independent when they present a non-significative overlap, and this happens for large d and 
for i  much different from j .  Thearguments presented in [I] cm~bedirectly translated to the 
case of R;,, and lead us to the conclusion that the region where (IO) is a good approximation 
to the true one is defined by the conditions 

d + c o  i > > j .  (11) 

It is also possible to establish that in this limit the parameters ai, U;, aj and wj verify [l]: 
ffj vi 
ffi uj 

l J i , U J > > l  - > > 1 .  

When this equation holds, it follows immediately that PE!, (2)  from (10) is vanishingly small 
for all z > 1, as mentioned previously. 

3. The asphericity in the case d = 2 

The analytic evaluation of the resulting probability distribution for the asphericity in the 
general d-dimensional case is a challenging problem even if one assumes that (7) and (5) 
hold. Nevertheless, in the particular case d = 2, where the asphericity (4) reduces to 

it is possible to evaluate analytically its probability distribution with the result [I] 

where 0 < x < 1, and p ( x )  is defined as 

1 - f i  
p ( x )  = -. 

l + J ; '  
When comparing this distribution against the Monte Carlo data, as we have done in 111, 

it is possible to see that both distributions differ significantly, especially for small values of 
x .  For x --f 0 the true distribution takes non-zero finite values. while (14) diverges. This 
disagreement is mainly due to the lack of independence between the distributions for A1 
and A2 [l]. 

Here we are going to study the analytical form of the two-dimensional asphericity 
probability distribution. To this end, we observe that A is connected to the ratio Rzl via 
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Therefore, in the two-dimensional case the asphericity' can be related to a single 
quantity-the ratio &-and then if one knows PRJz),  the probability distribution PA(x) 
can be evaluated easily. In fact, a simple and straightforward calculation leads us to 

. 1  
PA ( x )  = 4m - x )  ~[ f l (X)pRx(B(x) )+ - B ( x )  pR>~( A)] < 6.l . (17) 

Notice that if PR,, from (10) is placed into (l?), then (14) is obtained, this being an internal 
consistency check of these distributions. On the other hand, if PR,,(z) is null for z > 1, 
then the second term in (17) vanishes identically (notice that 0 < @ 6 1 when 0 < x < I), 
and one gets . . .  

Of course, these equations are only valid in the 4 = 2 case;~for d z 2 the asphericity 
does depend on more than a single eigenvalue ratio. The probability distribution PRi,, 
however, can bestudied in the general d case. For this reason it is more convenient to 
study the first term of this distribution and then use (18) to obtain the resulting distribution 
for the asphericity. This is what we will do in the following sections. 

4. The probability distribution for the ratios Rij 

The dist.ribution (IO) was obtained assuming independence between the probability 
distributions of Ai and Aj.  As discussed in section 2, equation (10) is a good~approximation 
to the true distribution in the limit (11). We can therefore consider that the distribution (10) 
represents the asymptotic limit of the true one when d >> 1 and i >> j .  We'also recall 
that we are considering i > j so the true distribution must vanish identically for z >. 1. 
Furthermore, it is not difficult to realize (see, for example, [9]) that for sufficiently large s, 
also PR~,  (1) is equal to zero. 

If we are looking for an approximation to the true distribution, we must consider just 
those functions which verify all the mentioned necessary conditions, namely: .(i) it is zero 
for z > 1, and (ii) it tends asymptotically to (IO) in the l i t  (11). Of course, additional 
conditions must, be imposed in order to completely determine the correct distribution. A 
usual approach in this direction is to build a parametrized function which verifies all 
the necessary requirements for certain parameter ranges, and then adjust the parameters 
imposing the additional constraint (or set of constraints) of fitting some given simulation 
(or experimental) data. 

. ,  

One such distribution is the following: 
I zO-l(l -z)+ 

(19) 
O f z < l  

PR;, (Z) = U (1 f UZ)@+Oi L- Z > l  
where w,  0'. y and a are external parameters, and U is a normalizing constant which can 
be evaluated imposing the usual normalization condition: 

The integral in (20) can be evaluated analytically [lo], and after some algebra the constant 
U can be put in the form 



3672 S I Sciutto 

where the function F(a, b; y ;  z )  is the well known hypergeometric function defined as 

with IzI < 1. 

the following restrictions to the values that the external parameters can take: 
In order to ensure that (19) has all the necessary propetties mentioned, we must impose 

W > l  o'>O y > 1  a z o  (23) 
and these parameters should approach the following limits asymptotically ford  -+ 00 and 
i > j :  

It is not difficult to see that when (23) and (24) hold, the necessary conditions (i) and (ii) 
are satisfied. In fact (i) is satisfied trivially. To see that (ii) holds it is also necessary to take 
into account that while in (19) PQ(z) = 0 for z 2 1, the distribution (10) is positive for all 
z > 0. To show that the two distributions are approximately equivalent in the asymptotic 
limit, one must require that PRII(z) in (10) be vanishingly small for all z > 1. This can be 
ensured since from (12) we can write 

ajvi - - - a = (1 +a) >> 1. 
ai vj 

With this additional result, using the following property of the hypergeometric function: 

and performing some simple algebra, it is easy to prove the equivalence of both distributions, 
that is, that the condition (ii) holds. 

Therefore, the distribution (19) verifies all the necessary conditions that can be required 
aprwri. In order to check the validity of (19) to adequately represent the true distribution 
in a particular case, we are going to determine the extemal parameters with the help of 
nonlinear least-squares fits to Monte Carlo data, as we shall see in the next section. 

4.1. Test of the distribution (19) 

We have performed many Monte Carlo simulations obtaining frequency histograms for 
several ratios Rjj. The simulations were done similarly as explained in [I]. A certain 
number N of independent random walks were generated. For each random walk, the inertia 
matrix (3) and the corresponding eigenvalues A I ,  . . . , h.d were calculated. Then these data 
were used to build frequency histograms in the following way. (i) A certain number m of 
intervals [ X X .  X~+I) ,  k = 1, . . . , m (xk > y for k > 1) were defined such that [XI, x,+l] 
represents the region of interest for the corresponding variable ( X I  = 0 and x,+l = 1 in the 
cases of Rij and A). (ii) The N Monte Carlo samples are used to evaluate the m frequencies 
&, k = 1, . . . , m, which represent the number of times the variable happened to lie in the 
corresponding interval [Q, xk+,) .  The f k ' s  are modified to obtain normalized frequencies 
hk in the following way: 



3 -  

The relation between these frequencies and an analytical probability distribution P ( x )  
follows immediately. For N large we can equate fk to N P ( x )  dx, and therefore 

d = 2  

c: . .  

for some (k E [xk,Xk+i] .  If m is large, the intervals [ x k . x k + ~ ]  are small and $& can be 
approximated satisfactorily by 

The simulations presented here were performed using very large values of N and m (superior 
by more than one order of magnitude to the corresponding ones used in [I]), and therefore 

In the case of the ratios R j j ,  we have performed simulations in spaces of different 
dimensions d ,  keeping s Exed, generally equal to 100 (we have not detected significant 
changes in the distributions for larger values of s). 

In figures 1-4, data corresponding to the cases d = 2, 3, 6, and 30, respectively, is 
displayed. In all these' figures we have plotted three curves, namely: (i) the Monte Carlo 
normalized histogram (full curve). (ii) PR;, from (19) (full curves), with parameters U,  U', 

y and a obtained from a nonlinear least-squares fit of the distribution to the Monte Carlo 
data. The well known Levenberg-Marquardt algorithm 1111 was used to perform the fit. 
(iii) P,q, from (10) (dotted curves), with parameters a,, vi, uj and uj obtained~from other 
independent Monte Carlo simulations as explained in [l]. 

In table 1 we display some representative values of the parameters used in the plots. 
As mentioned, the parameters corresponding to the distribution (19) were obtained f" 
nonlinear least-squares~fits, while the ones corresponding to the asymptotic distribution (IO) 
were calculated with the method of our previous work (see [I], table 2). We can clearly 
see the excellent agreement between the true distribution and (19) (in most cases it is not 
possible to distinguish between plots (i) and (ii)), for all values of d ,  i and j considered. 
The difference between the curves (i) and (ii) is always smaller than the average noise of 

permit the safe use of (28) and (29). .~ 
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3, 1 

W X I  

Figure 2. Same as figure 1, but in the d = 3 case with N = IO' and displaying the ratios (a) 
R2i and (b) Rn. 

Table 1. Representative values of panmeten corresponding to the probability distribution (19) 
for different ratios R+I = A,/AIi as obtained from nonlinear lewt squares fits of (19) to the 
respective Monte Carlo data. The panmeters corresponding to the asymptotic distribution (10) 
are also listed. 

d i w  v; 0' U1 Y a (a1 v; )/(a,  V I )  
, , ., 

2 2 6.68 3.22" 0.28 1.92 2.12 33.47 8.28 
3 2 10.29 4.13' 0.50 2.49 2.04 38.50 7.32 
6 2 12.86 6.m' 1.73 4.03 1.87 23.56 6.11 

30 2 20.47 17.83 13.46 16.19 1.68 5.92 4.39 
30 6 39.76 42.42. 16.29 16.19 1.11 88.49 95.02 

the Monte Carlo data. It is also possible to notice that the asymptotic distribution (10) 
separates significantly from the true one in the low d cases, and approaches it when d 
is large and/or i >> j .  Compare, for example, figures 2(u) and (b), and figures 3(a)- 
(C). 

In the d = 30 case, the two distributions (10) and (19) do not differ significantly. This 
also shows up in the values of the parameters obtained from the least-squares fit, especially 
for R61, which are approximately equal to the corresponding asymptotic values of (24) (see 
table 1). 

We have also performed simulations for many other ratios Rjj in a variety of situa- 
tions obtaining qualitatively similar results. Since we were not able to find previous papers 
studying the probability dislributions of the ratios R i j ,  we cannot present comparisons with 
independent calculations. 

There do exist, however, studies of the ratios of mem vulues [4, 71: 
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Figure 3. Same a? figure 1. but in the d = 6 case with 
N = lo' and displaying the d o s  (a), R ~ I  ( b )  R ~ I  and 
(c)  R61. Notice the different @es used in (c). 

and of the mean values (hi)  .[1,~8] which can be used to evaluate the corresponding 
ratios rij.  Of course, the quantities Rij and rij are conceptually different and 
there is no direct way of comparing them. Nevertheless, ~ the ratios r;j and the 
respective mean values (Ri j )  should be of the~same order of magnitude,, and so a 
comparison between them can be considered as an additional check of the validity of 
distribution (19).~ 

In order to evaluate ( R i j ) ,  it is necessary to calculate the integral 
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6 

d=30 

, ,, ,..,.. . , , ,.. , , , , , ,, .. ,, ,,,,,, , .,, ,,,,. ,, , , , ,, , , ,,,, ,,,, ,. .. 

Figure 4. Same as figure 1, bur in the d = 30 case 
with N = lo6. In this case the three curves, namely, 
the Monte Carlo normalired histogram and distributions 
(19) and (IO) are coincident. 

Similarly as for the evaluation of (21), we can evaluate, for n = 1,2,. . . , the nth moment 
of distribution (19) [lo]: 

(32) 
F ( y - w ' f n ,  o+n; y + w + n ;  6) 

F(Y -U', 0; Y + W  b) 

with b = a / ( l  +a). (Ri j )  is then obtained setting n = 1: 

Some typical values for the ratios rjj are given in [4]. Here, as well as in [7], only 
the d = 3 case is considered, and it is reported that for s very large the ratios r13 and 
rm are equal to 12.0 and 2.73, respectively. It is also said that these values are in good 
agreement with the results obtained in [7], and that they do not depend strongly on s. From 
these numbers, it is easy to obtain the following ratios rij with i > j :  rzl = 0.228 and 
r31 = 0.083. These values should be contrasted with the corresponding ones for (&I)  
coming from (33) with the external parameters taken from the solution of the least-squares 
fit, which in the d = 3, s = 100 case are the following: (Rzl) = 0.301 and ( & I )  = 0.117. 
It is evident that there is a good qualitative agreement between both pairs of numbers. 

From the results reported in [ l ]  for the mean values (AI)  and their respective errors, 
and the characteristics of the different probability distributions (equation (5) in this paper), 
it is possible to make the following considerations. (i) For large d the standard deviations 
of all the quantities considered are very small and so rjj and (Ri,) should not present 
large differences. This can be confirmed analysing some results for d = 30, s = 100. 
Using the data tabulated in [I] we can calculate, for instance: r.51 = 0.027577f0.000057. 
From equation (33), and using the data of table 1, one obtains (R6l)  = 0.0294. It is 
evident that in this case the difference between rjj and ( R i j )  is less significant than in 
the d = 3 case of the preceding paragraph. (ii) We can see that ( R j j )  > rjj in all the 
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examples that were considered. This can be explained qualitatively in the following way. 
Looking at the probability distributions Pi@) displayed in 111, it is evident that the most 
probable value A, is always less than the respective mean value (A), and that the relative 
difference ((A)-AmP)/(A) decreases when the label i is increased. A direct inspection of the 
different probability distributions shows that the mean value of Rjj is approximately equal 
to Aqi/Aqj (i > j). Therefore we have (Rio _N &,,pi/A~mpl z &)/(A[}, as expected. 

Both the results of the Monte Carlo simulations and the comparisons with related 
quantities here presented give strong support to the conclusion that the probability 
distribution of all the ratios Rij (i > j )  can be approximated adequately in the form of 
(19). 

5. Back to the asphericity in the case d = 2 

As established in section 3, the probability distribution for A in d = 2 is related to the 
probability distribution of the ratio Rzl .  Considering the experimental evidence presented 
in section 4, we can assume that PR,, is of the form of (19). Then, replacing this distribution 
into (18) and performing some simple algebra, one obtains the corresponding distribution 
for the asphericity: 

We have performed an independent Monte Carlo simulation to obtain a frequency 
histogram for the asphericity in the case d = 2 and s = 100. We used this data, normalized 
accordingly with (27). to see the correspondence of (34) with the true distribution, and, at 
the same time, to check the global consistency of the present approach. 

The data has been plotted in figure 5. The histo,.ram corresponds to the normalized 
Monte Carlo data, the full continuous line correspond to distribution (34) with w, w', y and 
a taken from the data of table 1 (we have not performed any fit using the asphericity data), 
and the dotted curve represents distribution (14). Notice that this figure is a high-resolution 

d = 2  I 

A 

Figure 5. Probability distribution of the asphericily 
in the d = 2, s = 100 case. The histogram 
corresponds to normalized Monte Carlo data with N = 
IO8 and m = 5000. The continuous full curve (not 
very distinguishable from the Monte Carlo histogram) 
corresponds to distribution (34) with parameren obtained 
with a nonlinear least-squares fit to the Monte &io 
data. The dotted c m e  represents equation (14) with 
parameters calculated as described in [I]. 
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1.34 d =, 2 , ,  

1.32 

P ,  1.30 

1.28 

Figure 6. Detailed plot of the Monte Carlo histogram 
of figure 5. showing clearly that both  PA^) and 
P;(z> finite and positive for x + 0. The straight 

0.00 0.05 0.10 0.15 0.20 0.25 line is a least-squares fit to the Monte Carlo data for 
.r E [O, 0.051, and its equation is y = 1.273+0.233x. A 

version of figure 6(u) of [I]. 

agreement, except perhaps near the origin where both curves differ slightly. 
It is evident that the distribution (34) and the Monte Carlo data are in very good 

Notice that from (34) we have Pa(0) = 0 for y > 2. If we let y = 2, we obtain 
2 (1 - J p - 1  

P A ( X )  = - 
U (1 + Jr;,*-" [ (U + 1) - (U - l)&qW+"' (35) 

and so in this case Pa(0) = 2/[U(u + # 0. We have therefore a critical behaviour 
of P a ( x )  in the neighbourhood of y = 2. Looking closely at the Monte Carlo data 
corresponding to x + 0, one can establish that Pa(0) and the derivative PA(0) are both 
finite and positive. In fact, in figure 6 we have displayed a small portion of the Monte 
Carlo histogram of figure 5. We can see that PA(x) # 0 for x as small as m-' = 2 x 
The straight line of figure 6 is a least-squares fit to the Monte Carlo data for x 4 0.05, and 
indicates clearly that PL(0) z Ot. 

It is worthwhile mentioning, however, that if a least-squares fit for P.Q~, is performed 
keeping y fixed and equal to 2, the resulting probability distributions obtained for both Rz, 
and A (equation (35)) do not approximate the respective Monte Carlo data as well as the 
distributions plotted in figures 1 and 5 do. This fact indicates that some small corrections to 
(19) may be needed in order to obtain probability distributions that will improve the ones 
here presented, especially in the d = 2 case and for PA(x)  with x + 0. 

6. Conclusions and final remarks 

We have performed a study of the probability distributions of the ratios of principal 
inertia moments, Rij ,  in arbitrary dimensions and of the asphencity, A, in two-dimensional 

t The fact that PA(0) > 0 indicates that the didbution PA(x)  possesses a maximum for some x # 0. In fact, 
looking at figure 5 one can see that the maximum is placed at x LI 0.3. This is made evident mainly for the low 
level of noise of the histogram, due to the very large n u m k  of samples used in the Monte Carlo simulations. 
Notice that in an earlier reference to the probability distribution of the two-dimensional asphencity [3] it was 
reponed that its most probable value is placed at x = 0. which is not comparible with the results of our simulation. 
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spaces. We have analysed the connection existing between both quantities and compared 
the corresponding analytical distributions with Monte Carlo data. 

From knowledge of the analytical form of the probability distribution for the moment 
ratios in the asymptotic limit for large dimension and negligible overlap between eigenvalue 
distributions [I] (d >> 1 and i >> j )  (equation (IO)), it was possible to construct heuristically 
a generalization in order to obtain a four-parameter analytical expression for the distribution 
in the general case (equation (19)). Performing nonlinear least-squares fits to Monte Carlo 
data in order to evaluate the external parameters at each case, it was possible to show that 
the distribution obtained agrees excellently with the Monte Carlo data, and that the external 
parameters possess the expected behaviour in the case of large spatial dimension. 

Using the mentioned distribution (19) in the case of two-dimensional spaces, it was 
possible to obtain an analytical expression for the sphericity (equation (34)), which also 
presents a very good agreement with the corresponding Monte Carlo data. However, 
both distributions differ slightly in the neighbourhood of the origin, suggesting that some 
secondary corrections would be needed in order to improve the accuracy of dis~but ion 
(34). 
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